vektor, dalam matematika, adalah besaran yang memiliki besar dan arah tetapi tidak memiliki posisi. digambarkan dengan ruas garis yang ujungnya berupa panah untuk menunjukkan arah.
Bimbel Jakarta Timur akan membahas mengenai Menghitung Luas Segi-n Beraturan Dengan Trigonometri. Segi-n beraturan yaitu bangun datar atau bentuk dimensi 2 yang terdiri dari garis-garis bersambungan membentuk bangun tertutup dengan sisi yang sama panjang dan sudut yang sama besar.
Jumlah besar sudut dalam segi-n beraturan dapat ditentukan dengan rumus :
Jumlah besar sudut dalam segi-n : (n-2) x 180° contoh : - Jumlah besar sudut dalam segitiga =(3-2) x 180°= 180° - Jumlah besar sudut dalam segiempat =(4-2) x 180°=360° - Jumlah besar sudut dalam segilima =(5-2) x 180°=540°
Jumlah besar setiap sudut segi-n beraturan dapat ditentukan dengan rumus :
Jumlah besar setiap sudut segi-n : (n-2) x 180°
n
contoh :
- Jumlah besar setiap sudut segitiga =(3-2) x 180°=60°
3
- Jumlah besar setiap sudut segiempat = (4-2) x 180°=90°
4
- Jumlah besar setiap sudut segilima =(5-2) x 180°=108°
Setiap sudut dalam segi-n beraturan akan dilalui oleh lingkaran yang disebut lingkaran luar. setiap sudutnya menyentuh lingkaran luar tersebut. Setiap segi-n beraturan dapat dibagi menjadi n buah segitiga yang kongruen.
Sudut dalam segitiga dalam pada segi-n beraturan dapat dihitung dengan rumus:
0 Komentar